

AUTOMATED GEOMONITORING

with low-cost GNSS sensors

Jürgen Alberding

Alberding GmbH

Delft, 14.06.2019

Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

Alberding GmbH

Alberding A07 Monitoring System

Applications

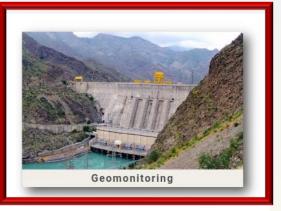
Outlook

Jürgen Alberding

Alberding GmbH - History

- **1994** Founded by Jürgen Alberding as GeoSurvey GmbH • \rightarrow Distribution of Trimble Geospatial systems
- 2003 Start of own GNSS infrastructure solutions in Wildau ۲ \rightarrow Separation of Trimble sales and own developments
- **2009** Sale of GeoSurvey GmbH to Trimble ("AllTerra") lacksquare
- **2019** KMU 12 Employees (11 engineers) ۲
 - \rightarrow Independent from GNSS receiver manufacturers

Alberding 🔫


Range of services (portfolio)

Adaptable **software, sensors, systems and services** for automated applications of precise (mm-cm) satellite based positioning, monitoring and data transmission

Jürgen Alberding

Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

System approach of Alberding GmbH

- Adaptable Web-based server software for (GNSS-) position based applications and services (Cloud solution)
- Mobile positioning solutions adapted to the customer needs in terms of data flow, special calculations, sensor integration
- "Intelligent telemetry & positioning sensors" (Alberding A07 and A10) for automated operation in the field with
 - High integration level
 - Standalone operation
 - Flexible configuration (data flow)
 - Use of low(er)-cost GNSS receivers

> Advantages of this approach:

- Attractive sensor prices
- Automation of solution adapted to the customer needs

Alberding GmbH products

- Combination of DGNSS/RTK and waterway information
 - Alberding Ntrip Caster: RTK corrections via Internet
 - Mass use of data (mount points, users)
 - Map display of user positions (WMS, Sentinel maps, iECDIS, etc.)

Integrity checked DGNSS corrections (pre-broadcast monitoring)

Beacon.Net: DGNSS Infrastructure solution for AtoN service provider

- AQC: Quality control for GNSS services
 - CheckStream, RTK check, InspectRTCM
- MaPos: Software for machine positioning
 - Positioning of excavators with GNSS-RTK receivers and tilt sensors
- AGIS: Field software for data collection and stake out
 - Surveying tool on digital maps, integration of photos
- Alberding Monitor: Geomonitoring solution
 - GNSS monitoring (Postprocessing, Near-Online Processing, RTK, PPP)
 - Other sensors (total stations, geotechnical sensors, etc.)

•

Alberding GmbH

Alberding A07 Monitoring System

Applications

Outlook

Jürgen Alberding

Use of GNSS sensors for geomonitoring

Advantages	Disadvantages							
Free of charge (Worldwide available (24 hours / 365 days (Aligh 3D accuracy (cm - mm) (High data rate (up to 50 Hz) (Weather independent (Robust sensors (No line of sight needed between (Measurement of single points Geometric height information Need to see the satellites (free sky) No guaranteed availability (military) Need of power and data transmission at the monitoring sensors High prices for GNSS sensors with carrier phase measurements Combination of different components (processor with software, modem and GNSS-Sensor) for automated operation 							

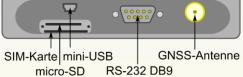
Addressed by Alberding A07

Alberding A07 monitoring system

- 1) Use of low-cost GNSS modules with code and carrier phase measurements ("raw data")
 - Low(er) price
 - Low(er) power consumption
 - Small(er) form factor

2) Hardware integration of main components

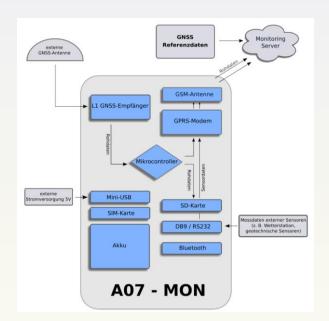
- GNSS Module (external GNSS antenna)
- Internal memory for data logging
- GPRS modem for the data transfer to the server
- Processor with Alberding data management software


3) Easy installation at the monitoring site

- Pre-configuration with the Alberding config-tool
- Press a "single button" or connect to power to start

4) System extension via USB or serial port

- Support of external data communication (radio modem)
- Logging of external sensor data (i.e. tilt sensors)
- 5) Complete system, consisting of
 - A07-MON sensors in the field
 - Alberding Monitoring Software at the server (Cloud)


Jürgen Alberding

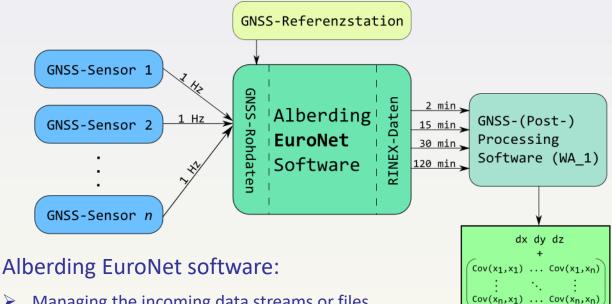
Automated geomonitoring with low-cost GNSS sensors

Automated geomonitoring with the A07-MON sensor

The integrated processor and the Alberding data management software in the Alberding A07-MON sensor are the key components for the automation of the monitoring process in the field

- Automated data logging of GNSS raw data in the sensor
 - Logging rate (i.e. 5 or 15 seconds)
 - elevation mask (i.e. 15 degrees)
 - > File size (i.e. 1 hour)
 - Timer functionality for logging intervals (i.e. 4 hours/day)
- Automated logging of internal sensor parameters
 - Capacity of the internal battery
 - Field strength of the GPRS modem
- Automated logging of external sensor data
 - Weather station
 - Tilt sensors
 - Geotechnical sensors
- Automated data transfer of the GNSS raw data and external sensor data
 - File transfer to the server (i.e. every hours)
 - Real-time data streaming (battery life time)

Data flow in the A07-MON sensor



Automated GNSS processing at the server

Autonomous operating A07 monitoring system in the field powered by solar panels

- Managing the incoming data streams or files
- Extracts external sensor data from GNSS data \geq
- Converts GNSS raw data in RINEX for multiple processing intervals (i.e. 1h, 4h, 24h) \succ
- \geq Supports other GNSS raw data (Trimble, Leica, Topcon, Septentrio, NovAtel, etc.)

Near-online processing is done by a 3rd party software

- WA2 from Prof. Wanninger (standard) \geq
- \geq Other packages (i.e. RTKlib) supported

Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

Alberding Monitoring Software

- _____
- Graphical overview on a digital map with status information (access via web browser)
- Time series plots
 - Coordinates from the post processing software
 - Coordinates from RTK measurements
 - External sensor data
 - "Sensor parameters"
- Alarming when exceeding thresholds
 - E-Mail and SMS lists for dedicated persons
 - Visual or acoustic alarms
- Reporting and data exchange
 - PDF and CSV output
 - FTP push to other servers
 - Archiving and storage

517.213	III. DHIRANSENCE II	N MUSEEL PROD	INFERIORE IN	CRAMMEN	19745			
_					_		_	_
are seen to	an ar damerera							
Urchen	Hatpendaten	GPS1			6752			
	Nutzernerne:		Keise Peettion		nin	Keine Poetlion:	4	rrin
	Toloise Detorealiseoilt		Alern 12:	10	an I	Alarm 112:	10	cm.
	Present.		Alone 26.1	[0, 1]		Alexe-Strip.	10	
	Party of sector	Arailana	Keise Peaklow	998 0		Kalos Paation	928	rein
	Telefon Unternellenolit		Aleren 12:	10		Alarm 112:	10	-
	Presett	[electric design descents]	Alarer Mills	(e. 1)		Alasse 1973	0	
	Bulgersense:	Kenneren 1pi	Keise Peaklow	83	***	Kains Parkins	128	rein
	Telefon Unternellonalit	491740427340	Aleren 102	10		Alarm 112	8 2	-
	Presette		Alarer Mills	0.1	•••	Alasse 1973 b	0	
	Nutzer serre:	Centroran 1p2	Keine Position	100	eis.	Keine Poetion:	121	rrin
3	Telefon Daternationality	491775274554	Aleren HZ:	(B) (Abarm 112	(1)	-
	Present		Alarer Mills	0.1	•••	Alasse State	þ.	
	Nutzer serre:	Legelay tem	Keine Position	906 1	nie	Keine Poetlion:	121	rnie
3	Telefon Unternationality		Aleren 12			Alarm 112	65	CH .
	P-math	[egravitation and	Alarer 2015	(n - 1)	•••	Alasse State	þ.	
	Rutzer serve:	Cartely Cartier	Heise Position	901	rie	Keine Poetion:	121	rrie
	Telefon Unternationalit		Alern 12:	10	an I	Alarm 192	10	cm.
	* mark	[1	Alasse Mitta	10 I)		Alasse State	0	
	Rulger serve:	\$11mm	Naise Pasition	901 I	rie	Kalos Paelline	424	rrie
	Telefon Unternationaliz	481740427577	Aleren H2:	10		Alarm 112:	10	cm.
	Frank	[changestrates]	Alarmer 200 To	10 I I		Alexenters.	0	

Alberding GmbH

Alberding A07 Monitoring System

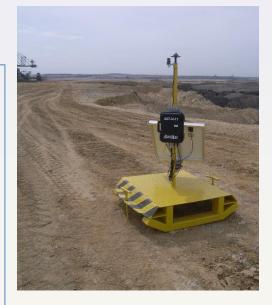
Applications

Outlook

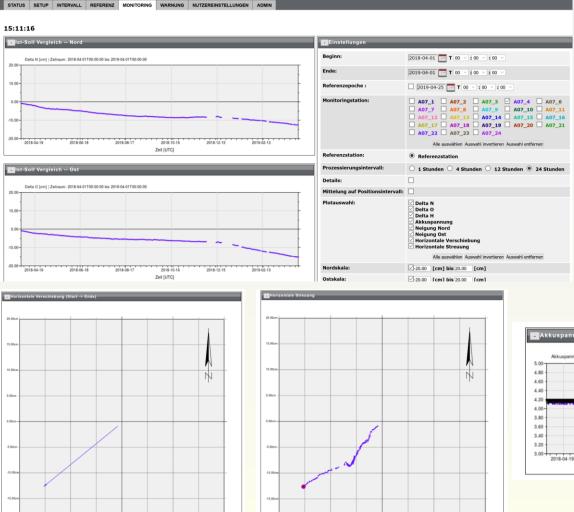
Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

Example: Monitoring of land slides (Germany)



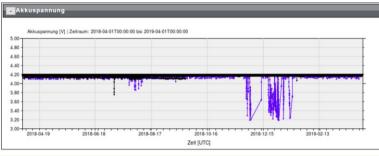
Installation of the A07-MON in a weather box at a pole with pre-configured sensors


Power: Autonomous operation with solar power (2 x 30W panels)

Data transfer: File transfer via mobile Internet (1h)

Processing: Alberding Monitoring Software on an Internet server platform (rental model)

-20.00


-20.00cr

Example: Land slide from 01.04.2018 – 01.04.2019

STATUS SETUP INTERVALL REFERENZ MONITORING WARNUNG NUTZEREINSTELLUNGEN ADMIN

Movement of Sensor 4 over the period of 1 year (01.04.2018-01.04.2019):

Pict.1: Change in the Northand East component Pict.2: Vector from start to end Pict.3: Horizontal movement Pict.4: Battery voltage (solar power)

Alberding

Jürgen Alberding

-5.00cm

20.00e

Example: Monitoring of a bridge (Netherlands)

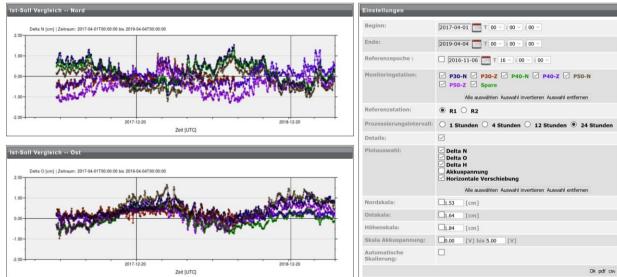
Last Friday Strukton Maatvoering & Monitoring completed a Factory Acceptance Test for the GNSS monitoring system on the Botlekbridge nearby Rotterdam. The results were satisfactory and within the specifications of the specified sub-cm accuracy. When the system is installed on the towers of the Botlekbridge sub-centimeter deformation can be measured. minder weergeven

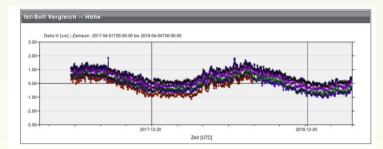
FAT test with total stations (Strukton)

Installation of 6 x A07-MON on the pillars and 2 x A07-MON sensors at the reference stations (west and east of the bridge) Data transfer: Mobile Internet Power: 220V available at the bridge

Processing: Alberding Monitoring Software at a customer PC with Internet access

Partner: NavSol Gerrit van der Vliet


Jürgen Alberding



STATUS SETUP INTERVALL REFERENZ MONITORING WARNUNG NUTZEREINSTELLUNGEN

12:06:22

Horizontal components: (+/- 1cm) Height: (+/- 1,5cm)

Jürgen Alberding

Example: Monitoring of a dam (Kirgistan)

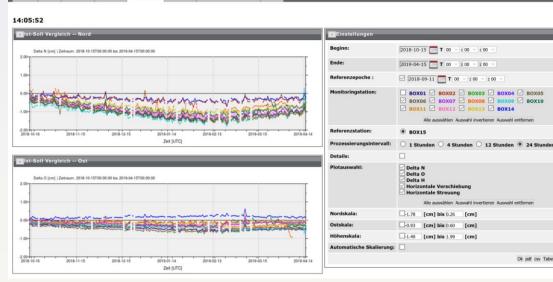
A07-MON sensorbox

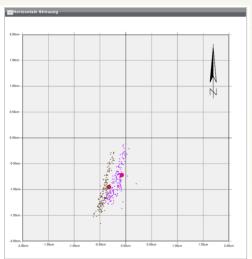
Master box with processing unit (PC)

Installation of 13 x A07-MON sensors at the dam and 2 x A07-MON sensors as reference stations (west and east of the dam)

Data transfer: Ethernet (RS232 converter)

Power: 48V at the dam


Processor : Alberding Monitoring Software on an embedded PC at the dam



Jürgen Alberding

Monitoring of a dam (15.10.2018 – 15.04.2019)

STATUS SETUP INTERVALL REFERENZ MONITORING WARNUNG NUTZEREINSTELLUNGEN ADMIN

Picture above: Variation in the North component -(up to 1,5cm in 6 month)

Ok pdf csv Tabelle

Picture left: Horizontal variation of sensor 6 and 7 (in 6 month)

Jürgen Alberding

Summary: Alberding A07 monitoring system

- Use of low-cost L1 GNSS modules with raw data (code and carrier phase)
 Low price, low power consumption, small form factor
- Integration of a GNSS module, a modem and memory in one sensor
 > One power management for all components
- Integration of an embedded PC and data management software
 - Requirement for process automation in the sensor:
 - GNSS and external sensor data logging
 - Data transfer to the server
- Automated Processing at the server
 - Management and conversion of the sensor data
 - Processing of RINEX-Files
 - Visualization and alarming
- Accuracies varies on the observation conditions (satellite visibility, distance to the reference station, multipath, observation time, etc.) Assumption: good sat. visibility, short baseline (<1-2km), low multipath
 - 1 hour solution => ~ 1-2cm
 - ➤ 4 hour solution => < 1cm</p>
 - 24 hour solution => < 0,5cm</p>

Summary: Alberding A07 monitoring system

- Most of the A07-MON customers purchased additional systems
 - Accepted monitoring system over 5 years
 - Cheap compared to other "geodetic GNSS sensors"
 - Easy setup due to the config-tool
 - Nearly mo man power needed for system operation
- Customer pay for system extensions (telemetry and positioning)
 - Additional sensors in the field (A07 as a data logger for other sensors)
 - Additional sensors for monitoring (i.e. total station data)
- A07 monitoring system is ideal for
 - Measurement of slow movements with high accuracy over longer time periods
 - Small distances to physical or virtual GNSS reference stations
- Limitations
 - Distance to the reference station should be less than 5km
 - A07-MON is not a real-time warning system

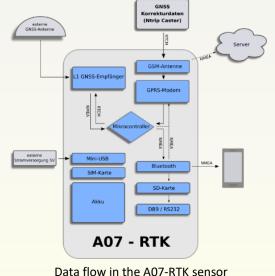
=> Move to RTK

Alberding GmbH

Alberding A07 Monitoring System

Applications

Outlook

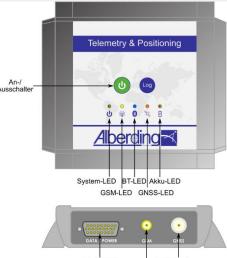


Jürgen Alberding

A07-RTK sensor for GNSS monitoring

- First tests with the u-blox M8P GNSS-module (2017)
 - Integration of the RTK module into the A07 sensor
 - Change of the data flow
 - Corrections from the server to the processor
 - RTK positions from the GNSS module to the processor
- Advantage: One system for multiple applications
 - RTK positioning (Surveying, GIS)
 - Data transfer
 - Geomonitoring
- Advantages for geomonitoring
 - No processing of the raw data at the server
 - Real-time alarming possible (after a couple of seconds)
- Disadvantages
 - Compared to A07-MON:
 - Higher requirements on power consumption and
 - data transmission
 - Shorter observation times -> more outliers
 - Compared to dual frequency GNSS:
 - Distance to the reference station
 - Initialisation time and reliability

Alberding A10 telemetry- and positioning system



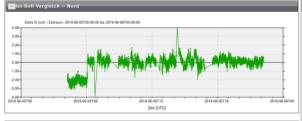
Components of the Alberding A10-RTK:

- L1/L2 GNSS Multisystem receiver
 - MB-Two (Trimble)
 - NV08C-RTK-M (NVS)
 - Piksi (SwiftNav)
 - F9 Chip (u-blox)
- Integrated LTE modem
- Bluetooth module with external antenna
- Integrated memory (MicroSD card)
- Integrated Cortex processor (data management)
- Optional: Integrated LINUX-Board for application software

Examples for A10-RTK (MB-Two):

- GNSS Monitorstation (TU Dresden)
- Monitorstation for RTK services (Swisstopo)
- Kinematic positioning (BKG)

Sub-D HD26 GSM-Antenne





Jürgen Alberding

Monitoring with A07-RTK and A-10 RTK (Horizontal)



A07-RTK (05.06.2019)

Outlieres caused alarms

A10-RTK (13.06.2019)

No outliers

Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

Alberding A10 telemetry- and positioning system

Applications for the A10-RTK sensor:

- Geomonitoring
 - Near-Online Processing
 - RTK
- Surveying / GIS
 - AGIS Software
 - RTK monitoring station
- Integrated LINUX-Board for application software:
 - SSR2OSR data conversion
 - Support of two IP-Addresses
 - Own processing algorithms
 - Alarming from the A10-RTK
 - Geomonitoring
 - Geofencing
 - Machine positioning
 - RTK + Heading
 - Data transfer
 - Machine data collection (CAN bus)

A10-RTK Rover with AGIS software

Jürgen Alberding

Automated geomonitoring with low-cost GNSS sensors

Thank you for your attention!

Jürgen Alberding

Alberding GmbH Schmiedestraße 2 D-15745 Wildau Tel.: +49 3375 52 50 370 Fax: +49 3375 52 50 377 Web: <u>www.alberding.eu</u> Mail: ja@alberding.eu

27/27

Jürgen Alberding